Current Issue : October-December Volume : 2024 Issue Number : 4 Articles : 5 Articles
In this study, we propose a novel method for quantifying tortuosity in 3D voxelized objects. As a shape characteristic, tortuosity has been widely recognized as a valuable feature in image analysis, particularly in the field of medical imaging. Our proposed method extends the two-dimensional approach of the Slope Chain Code (SCC) which creates a one-dimensional representation of curves. The utility of 3D tortuosity ( τ3D ) as a shape descriptor was investigated by characterizing brain structures. The results of the τ3D computation on the central sulcus and the main lobes revealed significant differences between Alzheimer’s disease (AD) patients and control subjects, suggesting its potential as a biomarker for AD. We found a p < 0.05 for the left central sulcus and the four brain lobes....
Objective To evaluate the consistency between doctors and artificial intelligence (AI) software in analysing and diagnosing pulmonary nodules, and assess whether the characteristics of pulmonary nodules derived from the two methods are consistent for the interpretation of carcinomatous nodules. Materials and Methods This retrospective study analysed participants aged 40–74 in the local area from 2011 to 2013. Pulmonary nodules were examined radiologically using a low-dose chest CT scan, evaluated by an expert panel of doctors in radiology, oncology, and thoracic departments, as well as a computer-aided diagnostic(CAD) system based on the three-dimensional(3D) convolutional neural network (CNN) with DenseNet architecture(InferRead CT Lung, IRCL). Consistency tests were employed to assess the uniformity of the radiological characteristics of the pulmonary nodules. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic accuracy. Logistic regression analysis is utilized to determine whether the two methods yield the same predictive factors for cancerous nodules. Results A total of 570 subjects were included in this retrospective study. The AI software demonstrated high consistency with the panel’s evaluation in determining the position and diameter of the pulmonary nodules (kappa = 0.883, concordance correlation coefficient (CCC) = 0.809, p = 0.000). The comparison of the solid nodules’ attenuation characteristics also showed acceptable consistency (kappa = 0.503). In patients diagnosed with lung cancer, the area under the curve (AUC) for the panel and AI were 0.873 (95%CI: 0.829–0.909) and 0.921 (95%CI: 0.884–0.949), respectively. However, there was no significant difference (p = 0.0950). The maximum diameter, solid nodules, subsolid nodules were the crucial factors for interpreting carcinomatous nodules in the analysis of expert panel and IRCL pulmonary nodule characteristics. Conclusion AI software can assist doctors in diagnosing nodules and is consistent with doctors’ evaluations and diagnosis of pulmonary nodules....
Artificial intelligence (AI) has been implemented in multiple fields of medicine to assist in the diagnosis and treatment of patients. AI implementation in radiology, more specifically for breast imaging, has advanced considerably. Breast cancer is one of the most important causes of cancer mortality among women, and there has been increased attention towards creating more efficacious methods for breast cancer detection utilizing AI to improve radiologist accuracy and efficiency to meet the increasing demand of our patients. AI can be applied to imaging studies to improve image quality, increase interpretation accuracy, and improve time efficiency and cost efficiency. AI applied to mammography, ultrasound, and MRI allows for improved cancer detection and diagnosis while decreasing intra- and interobserver variability. The synergistic effect between a radiologist and AI has the potential to improve patient care in underserved populations with the intention of providing quality and equitable care for all. Additionally, AI has allowed for improved risk stratification. Further, AI application can have treatment implications as well by identifying upstage risk of ductal carcinoma in situ (DCIS) to invasive carcinoma and by better predicting individualized patient response to neoadjuvant chemotherapy. AI has potential for advancement in pre-operative 3-dimensional models of the breast as well as improved viability of reconstructive grafts....
Objective To construct the deep learning convolution neural network (CNN) model and machine learning support vector machine (SVM) model of bone remodeling of chronic maxillary sinusitis (CMS) based on CT image data to improve the accuracy of image diagnosis. Methods Maxillary sinus CT data of 1000 samples in 500 patients from January 2018 to December 2021 in our hospital was collected. The first part is the establishment and testing of chronic maxillary sinusitis detection model by 461 images. The second part is the establishment and testing of the detection model of chronic maxillary sinusitis with bone remodeling by 802 images. The sensitivity, specificity and accuracy and area under the curve (AUC) value of the test set were recorded, respectively. Results Preliminary application results of CT based AI in the diagnosis of chronic maxillary sinusitis and bone remodeling. The sensitivity, specificity and accuracy of the test set of 93 samples of CMS, were 0.9796, 0.8636 and 0.9247, respectively. Simultaneously, the value of AUC was 0.94. And the sensitivity, specificity and accuracy of the test set of 161 samples of CMS with bone remodeling were 0.7353, 0.9685 and 0.9193, respectively. Simultaneously, the value of AUC was 0.89. Conclusion It is feasible to use artificial intelligence research methods such as deep learning and machine learning to automatically identify CMS and bone remodeling in MSCT images of paranasal sinuses, which is helpful to standardize imaging diagnosis and meet the needs of clinical application....
We present a deep learning-based method that corrects motion artifacts and thus accelerates data acquisition and reconstruction of magnetic resonance images. The novel model, the Motion Artifact Correction by Swin Network (MACS-Net), uses a Swin transformer layer as the fundamental block and the Unet architecture as the neural network backbone. We employ a hierarchical transformer with shifted windows to extract multiscale contextual features during encoding. A new dual upsampling technique is employed to enhance the spatial resolutions of feature maps in the Swin transformer-based decoder layer. A raw magnetic resonance imaging dataset is used for network training and testing; the data contain various motion artifacts with ground truth images of the same subjects. The results were compared to six state-of-the-art MRI image motion correction methods using two types of motions. When motions were brief (within 5 s), the method reduced the average normalized root mean square error (NRMSE) from 45.25% to 17.51%, increased the mean structural similarity index measure (SSIM) from 79.43% to 91.72%, and increased the peak signal-to-noise ratio (PSNR) from 18.24 to 26.57 dB. Similarly, when motions were extended from 5 to 10 s, our approach decreased the average NRMSE from 60.30% to 21.04%, improved the mean SSIM from 33.86% to 90.33%, and increased the PSNR from 15.64 to 24.99 dB. The anatomical structures of the corrected images and the motion-free brain data were similar....
Loading....